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1 Introduction

The production of synthetic plastics underwent a fundamental transition during World War II, driven by
warfare’s unprecedented scale of material intensity, shortage of natural rubber, and the versatility of synthetic
polymers [1, 2]. The newly installed infrastructure for synthetic plastics production found purposes after the
war by fulfilling the needs of the upcoming consumer society [3].

Since then, the cumulative production of primary plastics between 1950 and 2019 is estimated to be 9.5
billion tonnes [4]. With the durability of plastics against physical and chemical stresses together with a low
reuse and recycling rate, plastics have been accumulation in the environment including animal and human
bodies [5, 6, 7, 8].

Against further pollution, the EU has introduced numerous action plans and directives that either in-
or directly address plastic consumption and waste collection and treatment. First, the Marine Strategy
Framework Directive addresses marine pollution and its monitoring [9]. Second, the Zero Pollution Action
Plan aims at improving water quality by reducing plastic litter at sea and microplastics released into the
environment [10]. Third, the Single-Use Plastics Directive aims at preventing and reducing the impact
of certain plastic products on the environment and on human health [11]. Finally, as part of the Circular
Economy Action Plan the EU laid out a Plastics Strategy with the aim to improve the economics of plastics
recycling and achieve a plastics recycling rate of 10 Mt per year by 2025 [12, 13].

To support the Circular Economy Action Plan and it’s plastic recycling target, detailed knowledge of material
cycles regarding, quantities, qualities, and locations of plastics containing commodities are required. This
is achieved through material flow analysis (MFA), which models the flows of materials through society
and it’s technological arrangements. In the past, such analysis has often been done in reaction to debates
and bans on certain plastic types, as only then was it possible obtain information to quantify and trace
plastic flows [14]. Examples here are the case of polyvinylchloride (PVC) in Sweden [15], global leakage of
polychlorinated biphenyls (PCBs) [16], and polybrominated diphenyl ethers (PBDEs) in the US and Canada
[17]. Since the plastics pollution problem has attracted more media attention due to the discovery of micro-
and nano-plastics and ambitions plastics recycling targets have been set, attempts have been made to model
plastics flows on a broader and more detailed level. This has been done by further splitting the plastic
fraction of a product group into various plastic types (e.g., PET, PU, ABS, PP, PC, ...), including new sectors
and product group (e.g., the textile sector and its product groups), and working on a less aggregated level of
product groups (e.g., using UNU , CN , PC , or CPC product classifications) [18, 19, 20, 21].

Refining MFA models comes with multiple challenges, especially when including post-consumer waste
streams, due to the "invisibility of waste" [22]. One such challenge is the uncertainty of product group
attributes, such as service lifespan or material composition (in our case plastic fraction and composition).
The service lifespan, which defines the lifespan in which a product is functional, is essential for dynamic
MFA that models temporal evolutions of the market. Knowledge of the material composition of a product
helps to identify the theoretical volume of certain material that could be extracted from a certain sector or
product group. Such product group attributes can be estimated through various methods (e.g., surveys,
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questionnaires, standards, near-infrared spectroscopy), each coming with it’s own advantages, shortcomings
and possible biases [23, 24, 25].

State-of-the-art plastic flow models have recently started to account for uncertainties in transfer coefficients,
used to described the partitioning of a material through a process [18, 26, 27]. Although the uncertainties in
product group attributes have been acknowledged in the past, no plastic flow model has yet incorporated
them. This can lead to a distortion of the plastic waste streams, create artificial certainty, and misguide
policy interventions. This study advances the current practice of plastic flow modelling through the creation
of a database of the commonly used product attributes: product weight, service lifespan, and material
composition. Based on this database we are able to provide a theoretical lower and upper bound of the
amount of plastics that enter the post-consumer waste stream and could be recycled.

2 Methodology

Product weight
Publication PCS
Magalini et al. [28] UNU v2012
Wang et al. [29] UNU v2012
Huisman and Habib [30] UNU v2012
? ] CN v2017
Forti et al. [31] UNU v2012
Amadei et al. [19] PC v2020
Souder et al. [21] PC v2019

Product service lifetimes
Publication PCS
Daigo et al. [32] CPC v20
Huisman [33] UNU v2012
Huisman and Habib [30] UNU v2012
Kawecki et al. [26] Sector
Eriksen et al. [34] Sector
? ] CN v2017
Forti et al. [31] UNU v2012
Geyer et al. [35] Sector
Ciacci et al. [36] Sector
Drewniok et al. [20] PC v2016
Bolinius et al. [14] UNU v2012

Product composition
Publication PCS
Geyer et al. [35] Sector
Accili et al. [37] UNU v2012
Plastics Europe [38] Sector
Amadei et al. [19] PC v2020
Drewniok et al. [20] PC v2018
Souder et al. [21] PC v2019
Wäger et al. [39] Prod. Gr.

Table 1: List of publications from which estimates
of product attributes were obtained. The product
classification system (PCS) to which attributes were
attached in a corresponding publication are shown
in the right column.

To assess the uncertainty of product attributes we col-
lected data on product weights, service lifespans, and
material composition from reports, scientific articles,
and databases which are listed in Tab. 1. These sources
use various product classification systems (PCS) to
which attributes were linked (see left column of Tab. 1.
As this hinders a direct comparison between product
attributes in some cases, a PCS had to be chosen to
which other PCS can be translated. For such pur-
pose, the UNU key classification systems of products in
the electrical and electronic equipment (EEE) sector
has several useful characteristics. Firstly, the EEE
sector has been studied in more detail than others,
as it is generating one of the fastest growing waste
streams containing not only plastics but also highly
toxic materials [40]. Secondly, UNU key classification
systems is constructed such that product groups share
comparable average weights, material compositions,
end-of-life characteristics and life-time distributions
[31]. Finally, several correspondence tables between
UNU keys and other PCSs exist.

To translate from official PCSs (e.g., PC , CN , and CPC ) to
UNUkeys, correspondence tables published by Eurostat
and the United Nations University were used. The
translations aren’t however always straight forward
and the following points shall be noted. First, although
the CN codes have undergone major changes between
2021 and 2022, the most recent correspondence table
is between CN version 2019 and UNU keys. Second,
direct mapping to UNU keys from PC code lists exist for
versions 1993 to 2015 of the latter. For later PC versions
the path with the lowest number of translations has
to be found, leading either via PC version 2015 or
CN version 2019 to the UNU classification. While PC and
CN product code lists are updated annually, the HS list
is updated approximately every 5 years while the
revision of the CPC list happens less regularly with the
most recent version published in 2015. As no direct
correspondence between any CPC version to UNU keys
exist, a translation path via HS version 2007 had to be
taken. In cases where unofficial product groups were used, a correspondence based on their descriptions
was created with supported by the EEE EU-10 categories. Some works use an averaged attribute for the
entire EEE sectors (e.g., [35, 36]) which are compared to the distribution across UNU keys instead of their
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individual values. Fig. 1 gives a graphical representation how a PCS listed in Tab. 1 was translated to the
UNU key classification systems.

Each of the collected data points was filtered depending on whether their geographic scope lies within the
European Union (28), to ensure that the product attributes have been sampled a similar economic system. No
temporal trend was identified for any of the product attributes. Therefore we kept all data points spanning
the period between 1980 and 2022, which is in line with [? ]. Filtering based on the methods through which
product attributes were obtained was not done, as they are an important source of uncertainty studied
here. While we changed the data format of all sources from which we collected data, such that they match
one database schema, we did not undertake changes in the data itself with one exception. Upon closer
inspection of the LiVES dataset published by Daigo et al. [32], we identified false lifespan parameters that
were referenced to Cooper [41] and corrected them.

3 Results

Figure 1: Correspondences graph between all product
classification systems used within this study.

In the top row of Fig. 2 we show the estimates of
each publication for each product attribute for 20
UNU keys that have the largest put-on-market (POM)
quantities (in tons) in the EU (27). We have used
the UNU keys as y-axes tick labels, as too much space
would be taken by their long name form, which is
given in [31]. While some publications provide a
single estimate which we indicate by a single vertical
line, other have given ranges which we indicate
through a shaded region.

On the left column we compare estimates of product
weight in kg/pc. We can notice the top 20 UNU keys
with the largest POM quantity in tons correspond to
products with the largest weight per item estimate
(the top three being washing machines, fridges, and
household heating and ventilation). In the bottom
panel, we show the probability density across all
UNU keys weighted by their POM quantity. This
distribution shows, that the majority of UNU product
groups not shown in the panel above are lighter
than 20 kg/pc. When analysing the relation between

estimated product weights and the relative difference between the minimum and maximum estimate for a
UNU key, an inverse correlation is found. In other words, there is better agreement between different product
weight estimates the heavier a product on average is.

In the central column we compare estimates of product service lifespan in years. Service lifespans are given
in different forms, such as single averaged estimate, parametric probability functions, or non-parametric
probability distributions. For individual UNU keys only the first two were encountered. In case a publication
provided a parametric probability function, it’s scale parameter was taken as the average service lifespan.
Looking at the relation between product weight and service lifespan a weak coupling was found. Products
with a service lifespan below 7 years also weigh no more than 25 kg/pc. Therefore, we find a wider range
in the probability density shown in the bottom panel, with most products likely to fail between 5 and 20
years. Plotting the averaged weight per UNU key against the relative differences between the minimum and
maximum estimate of the service lifespan no trend can be found.

In the right column we compare estimates of plastic fraction contained in product groups. As in the previous
case, we can find a weak correlation between a products plastic fraction and weight, in which products with
a plastic fraction higher than 0.4 weight less than 25 kg/pc. A clear trend that can be uncovered is the shorter
service lifespan of a UNU product the higher its plastic fraction is. Plotting the averaged weight per UNU key
against the relative differences between the minimum and maximum estimate of the plastic fraction the
following trend emerges. The numerous plastic fraction estimates are more aligned for the heavier products,
while their disagreement increases for lighter products.

The dashed lines in the bottom row of Fig. 2 indicate the published estimates for service lifespan and
plastic fraction for the entire EEE sector. Concerning the service lifespan, the sector wide estimate given
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by Geyer et al. [35], Ciacci et al. [36], Eriksen et al. [34], Kawecki et al. [26], and Drewniok et al. [20]
are within the uncertainty range across all UNU keys. The only exception is for Bolinius et al. [14], who
assumes an average service lifespan of 25 years for products within the EEE sector. Their estimates relied
on personal communication from the Swedish Chemical Agency and they acknowledged the likelihood
of an overestimation. For plastic fractions the sector wides estimate given by Geyer et al. [35] is likely an
underestimate of the true average.

Figure 2: Uncertainties in estimates of product weight (left column), service lifespan (central column), and
plastic fraction (right column). The top row shows each product attribute estimate for 20 UNU keys that
have the largest put on market mass flow. The bottom row shows the probability density for each product
attribute across all UNU keys. Dashed lines indicate published estimates for the entire EEE sector.

In our last step, we applied the identified uncertainties in service lifespan and plastic fraction to the POM
quantities per UNU key provided by [42] to forecast the plastic fraction entering the waste stream as product
reach their end of life. We show the result for the WEEE EU-10 categories in Fig. 3. The probability distribution
of a product attribute was chosen as a top-hat function bound by the minimum and maximum estimate for a
given UNU key. This is a more conservative approach when compared to the approach chosen by Kawecki
et al. [18] to deal with uncertainties in transfer coefficients. Comparing the amounts of plastic entering the
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post-consumer waste stream at 2022 of the different WEEE EU-10 product groups we can identify large
household appliances (shaded dark green) as the dominant source of plastics, followed by small household
appliances (shaded purple), IT and telecommunications equipment (shaded red), and consumer equipment
and photovoltaic panels (shaded yellow). Together they are the main waste stream sources, all have a flow
mass well above 100 kt at 2022. Of the remaining WEEE EU-10 product groups monitoring and control
instruments (shaded grey) leads, followed by electrical and electronic tools (shaded orange), toys, leisure
and sports equipment (shaded bright green), and lightning equipment (shaded blue).

Figure 3: Mass flow time series from 1980 to 2022 for plastics of each WEEEE EU-10 product group entering
the post-consumer waste stream. At 2022 large household appliances are the largest source of most plastics,
while automatic dispenser contribute the least amount.

When considering the spread of estimates for the year 2022 in Fig. 3, a strong relation between the average
flow mass and its uncertainty is found. This means in general, that the larger the plastic mass flow that
enters the post-consumer waste stream is, the more difficult it is to confidently state its quantity.

4 Conclusion

Through this work, we are advancing the field of plastics flow modelling by foregrounding and including
uncertainties of essential product attributes (such as, weight, service lifespan, and plastic fractions). In this
way, we attempt to tackle and reduce the problem of what Strasser [22] named the "invisibility of waste" to a
bounded range of possible post-consumer waste flow masses.

Shining a light on these uncertainties is paramount, as they can influence the demand of recycled plastics [43].
It not only impacts the commitment of manufactures to introduce recycled material in new products, but also
the willingness of the recycling industry expand their operations to adequately deal with the plastics sourced
from the complex EEE waste stream. An estimate made by the Austrian plastics recycling company MGG
Polymers on the total amount of WEEE plastics in 2017 lies at 1.4 million tonnes [44]. While their estimate lies
within the uncertainty range we modelled for that year, it could be increased by 590 kt or decreased by 240 kt
and still be plausible. Introducing these uncertainties around averaged estimates highlight how difficult it
can be for, e.g., the recycling industry to forecast their needed capacity or for manufacturing industries to
ensure the required amount of recycled feed stock.
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