Decreasing Complexity

Increasing Numbers

Part 1: The Law of Large Numbers

Christoph Becker

Who am I

... Give a little introduction about yourself ...

The Covid-19 Pandemic in England

The Covid-19 Pandemic in England

The Law of Large Numbers - Kruskal Count

Card Value

The Law of Large Numbers - Kruskal Count

Card Value

Spectator

The Law of Large Numbers - Kruskal Count

Card Value

The Law of Large Numbers - Kruskal Count

Card Value

Spectator

The Law of Large Numbers - Kruskal Count

Card Value

Spectator

The Law of Large Numbers

Observation:

The larger the number of cards we use, the more likely it is to end on the same card.

The Law of Large Numbers

Observation:

The larger the number of cards (n) we use, the more likely it is to end on the same card.

Generalization:
The larger the number of trials $\left(\lim _{n \rightarrow \infty}\right)$, the more likely it is that their sample average (\bar{X}) is equal to the expectation (μ).

The Law of Large Numbers

Observation:

The larger the number of cards (n) we use, the more likely it is to end on the same card.

Generalization:
The larger the number of trials $\left(\lim _{n \rightarrow \infty}\right)$, the more likely it is that their sample average (\bar{X}) is equal to the expectation (μ).

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \bar{X}=\mu\right)=1
$$

The Law of Large Numbers

Generalization:

The larger the number of trials $\left(\lim _{n \rightarrow \infty}\right)$, the more likely it is that their sample average (\bar{X}) is equal to the expectation (μ).

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \bar{X}=\mu\right)=1
$$

The probability that the sample average is equal to the expectation, if you have an infinite number of trials, is one.

The Law of Large Numbers

Generalization:

The larger the number of trials $\left(\lim _{n \rightarrow \infty}\right)$, the more likely it is that their sample average (\bar{X}) is equal to the expectation (μ).

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \bar{X}=\mu\right)=1
$$

The probability that the sample average is equal to the expectation, if you have an infinite number of trials, is one.

Decreasing Complexity

Increasing Numbers

Part 2: The Central Limit Theorem

Christoph Becker

Central Limit Theorem

... Coming soon ...

